Nonlinear dynamics of a new seasonal epidemiological model with age-structure and nonlinear incidence rate

نویسندگان

چکیده

In this article, we study the dynamics of a new proposed age-structured population mathematical model driven by seasonal forcing function that takes into account variability climate. We introduce generalized force infection to different potential disease outcomes. Using nonlinear analysis tools and differential inequalities theorems, obtain sufficient conditions guarantee existence positive periodic solution. Moreover, provide assure global attractivity Numerical results corroborate theoretical in sense solutions are solution is attractor. This type models important, since they take weather impact on some epidemics such as current COVID-19 pandemic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dynamics of an Eco-Epidemiological Model with Nonlinear Incidence Rate

This paper treats the dynamical behavior of eco-epidemiological model with nonlinear incidence rate. A Holling type-II prey-predator model with SItype of disease in prey has been proposed and analyzed. The existence, uniqueness, and boundedness of the solution of the system are studied. The local and global dynamical behaviors are investigated. The conditions, which guarantee the occurring of H...

متن کامل

the study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media

امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...

Dynamics of a Delayed Epidemic Model with Beddington-DeAngelis ‎Incidence Rate and a Constant Infectious Period

In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...

متن کامل

Analysis of a Delayed SIR Model with Nonlinear Incidence Rate

An SIR epidemic model with incubation time and saturated incidence rate is formulated, where the susceptibles are assumed to satisfy the logistic equation and the incidence term is of saturated form with the susceptible. The threshold value R0 determining whether the disease dies out is found. The results obtained show that the global dynamics are completely determined by the values of the thre...

متن کامل

Global Dynamics of an Epidemic Model with a Ratio-Dependent Nonlinear Incidence Rate

We study an epidemic model with a nonlinear incidence rate which describes the psychological effect of certain serious diseases on the community when the ratio of the number of infectives to that of the susceptibles is getting larger. The model has set up a challenging issue regarding its dynamics near the origin since it is not well defined there. By carrying out a global analysis of the model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational & Applied Mathematics

سال: 2021

ISSN: ['1807-0302', '2238-3603']

DOI: https://doi.org/10.1007/s40314-021-01430-9